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A simple kinetic model is proposed to account for the behaviour of the specific heat of polymers 
near the glass transition. There is no need to assume any sudden changes of thermodynamic variables 
with temperature and the observed transition is attr ibuted to a rapid but smooth change of the mole- 
cular relaxation time. The concept of a f ictive temperature is introduced and is shown to be useful 
in understanding the behaviour of other thermodynamic quantities such as expansivity. 

INTRODUCTION 

The nature of the glass transition in polymers is still con- 
troversial, with at least one school regarding it as basically 
a thermodynamic phenomenon 1'2. Here we wish to argue 
that the observed transition is purely kinetic, in the sense 
to be made precise below. Such a view has been advanced 
by Volkenshtein and Ptitsyn 3 on the basis of a two state 
system and by Wunderlich et al. 4,s on the basis of hole 
theory. Our purpose is to place the discussion in a more 
general and transparent context, and to show that the gene- 
ral ideas described below are not necessarily linked to any 
specific microscopic interpretation such as two state sys- 
tems or holes. With the complications and unnecessary 
assumptions associated with any particular microscopic 
interpretation removed, the phenomenological description 
is more easily understood and more convincing. 

The glass transition is discussed in terms of the specific 
heat capacity. The basic features observed near the glass 
transition are summarized and a simple kinetic model is 
proposed to account for these features. 

EXPERIMENTAL FEATURES OF THE SPECIFIC HEAT 

The glass transition is revealed as a step-like jump in specific 
heat determinations as functions of  temperature. However, 
difficulties appear if this jump is regarded as a second order 
transition in the thermodynamic sense. 

(a) The observed specific heat is dependent on the rate 
of measurement. For example, in differential scanning 
calorimeter (d.s.c.) measurements, the temperature 0 of  the 
sample is made to increase linearly with time, t: 

dO 
- q  (1) 

dt 

If  for a unit mass, the power necessary for maintaining this 
increase is P then the specific heat C is given by: 

c = P/q (2) 

The value of C so obtained depends on the rate q, as illus- 
trated in Figure la by the data on poly(vinyl chloride) 
(PVC). We note that all the measurements reported in this 
paper are performed by heating 15.25 g of a commercial 

sample of  PVC (M w = 83 500, Mn = 37 400) at a specified 
rate in a Perkin-Elmer  Model DSC-II differential scanning 
calorimeter. It is clearly seen from Figure la that the tran- 
sition temperature, operationally defined as the midpoint 
of the jump, increases by about 5K for each decade in- 
crease in q. 

This property alone implies that what is being measured 
is not really a specific heat (which, being a thermodynamic 
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Figure I Effect of heating rate on the specific heat of PVC. A, 20; 
B, 10; C, 2.5 K/rain. The sample has been cooled at 2.5 K/rain 
from 390 to 330K before the measurement. (a) Experimental; 
(b) theoretical 
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Figure 2 Effect of cooling rate on the specific heat of PVC. A, 
0.31 ; B, 1.25; C, 5 K/min. The sample has been cooled at these 
rates from 390 to 330K. Heating rate during measurement is 
20K/rain. (a) Experimental; (b) theoretical 
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quantity, is by definition rate independent). As a corollary, 
it suggests that an explanation of the transition should be 
sought in kinetics rather than thermodynamics. 

(b) Even for the same heating rate q during measure- 
ment, the apparent specific heat C depends on the history 
of the sample, for example on whether the sample was 
quenched or slow cooled, as illustrated in Figure 2a. Such 
history dependence implies that the temperature (as mea- 
sured by a thermometer) is not by itself a complete descrip- 
tion of the state of the system*. One or more parameters 
or degrees of freedom are necessary. An analogy is per- 
haps useful: if the magnetic state of iron is described only byH, 
one would find a dependence on history (for example, it 
may or may not be magnetic when/7 = 0); but if one speci- 
fies both J~and/-7, then no knowledge of the history is 
required. 

These considerations force one to the conclusion that a 
proper understanding of the glass transition can only be ob- 
tained from a kinetic model involving at least one more 
degree of freedom. The model described in the next section 

* The pressure is fixed and the volume is a dependent variable via 
the mechanical equation of state. 

is probably the simplest of this type and the extra degree of 
freedom introduced corresponds to the fictive temperature 
of Tool 6. 

(c) Some fine structures are also discernible. The most 
important feature is the existence of a peak, the height of 
which is strongly history dependent. Figure 3a shows data 
on PVC annealed for different times before measurement. 
It is seen that the height of the peak increases with anneal- 
ing time. 

THE MODEL 

Qualitative considerations 
Consider a unit mass of sample for simplicity. To discuss 

the heat capacity we need to consider the modes in which 
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Figure 3 Effect of annealing on the specific heat of PVC. A, 24; 
B, 5; C, 1 h at 348K. The sample has been cooled at 20 K/min 
from 390 to 348K and then annealed for the specified time. Heat- 
ing rate during measurement is 5K/rain. (a) Experimental; 
(b) theoretical 
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energy can reside. We shall assume that there are two types 
of modes. 

(a) First there are the phonon modes and other modes 
strongly coupled to, and hence always in equilibrium with, 
the phonons. We denote these modes by the subscript a. 
Since these modes are in thermal equilibrium, they may be 
described by a temperature Oa. The variation of energy in 
these modes with Oa is described by a heat capacity Ca(Oa). 

(b) Secondly, there are other modes which may, at some 
temperature, be only weakly coupled to, and hence not 
necessarily in equilibrium with, the phonons. We denote 
these modes by the subscript b and use a temperature 0 b 
to describe the degree to which they are excited. Likewise, 
the variation of energy in these modes with 0 b is described 
by a heat capacity Cb(Ob). It is generally believed that these 
modes are related to micro-Brownian motion involving the 
whole chain or large segments of the chain 7'8, but it is not 
necessary to specify the nature of these modes in our theory. 

We should remark that thermometers interact with the 
sample only through the phonons, so the temperature ex- 
perimentally determined is 0 a. Of course 0 b is in general 
different, this being a reflection of the departure from 
equilibrium. Since the 'b'  type modes do not interact with 
thermometers, 0 b is not directly measurable and is there- 
fore a sort of fictive temperature. In future, when we refer 
to 'temperature' without qualification, we mean Oa. 

We also note that the two types of modes are not re- 
garded as spatially separate; indeed we imagine the sample 
to be so small that all spatial variation (temperature gra- 
dient, heat diffusion etc.) is irrelevant. 

Our model is then specified by the following equations 
for energy balance: 

Ca(Oa) dOa__ = P + F(Oa ' Ob) 
dt 

(3) 

dO b = _ F(Oa, Ob) 
Cb(Ob) dt (4) 

In equation (3), P is the external power supplied to the 
sample; no analogous term appears in equation (4) because 
the 'b'  type modes are assumed not to communicate directly 
with external sources. F describes the exchange of energy 
between the two types of modes. In general, if equations 
(3) and (4) are solved for any given situation, the apparent 
specific heat is: 

C - p/dO a 
- / ~ 7  (s) 

To proceed, we have to specify F(Oa, Ob). For Ob not 
too far from Oa, we may expand to obtain: 

aF  
F(Oa, Ob) = F(Oa, Oa) + ~ (Oa, Oa) (Ob -- Oa) + " "  (6) 

OOb 

The zero order term vanishes and if we define: 

8F 
~(o , )  = = -  ( o , .  o , )  

o~b 

then 
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= P - v ( G ) ( G  Oh) (7) Ca(o a) ddO: 

dOb 
Cb(Ob) di- = T(G) (G - Ob) (8) 

Note that 7 > 0, to ensure that heat flows in the correct 
direction. The significance of 7 can be clearly seen if we 
consider the adiabatic case P = 0. Then 

_ ( 1 + _ , /  
d ( G  _ Ob)= - T (0 .  - 0b) 
dt ~Ca Cb] 

For small departures from equilibrium, 7(Ca - I  + Cb -1) 
may be regarded as a constant, and Oa - Ob is seen to relax 
with a time constant r: 

- =  + ( 9 )  
T 

where all quantities in equation (9) are evaluated at the 
same 0 a. From now on we shall use the more physical 
variable r in place of T- 

In general we expect r to decrease rapidly but smoothly 
with increasing 0 a, while Ca and Cb will depend only weakly 
on the respective temperatures. With this in mind, let us 
consider the qualitative implication of equations (7) and 
(8). At very low temperatures, the relaxation time ~- is so 
large that any energy fed into the system stays in the 
phonons modes, since the 'b'  modes are essentially de- 
coupled. So the apparent specific heat will be Ca. At high 
temperatures, the relaxation time r is so short and the 'a' 
and 'b' modes are so strongly coupled that they may be 
regarded as one system at the same temperature. The 
apparent specific heat measured will be that of the whole 
system, i.e. Ca + Cb. The existence of a step in the appa- 
rent specific heat is therefore expected only on these gene- 
ral grounds. 

To understand the rate dependence we note that for 
measurements made at a large heating rate, the time scale 
involved is short, so that there is little opportunity for heat 
exchange between the two types of modes. Therefore these 
modes are closer to being decoupled and the apparent speci- 
fic heat will be closer to Ca than to Ca + Cb. This lowering 
of the apparent specific heat, as can be seen from Figure 1, 
is equivalent to a shift of the transition to higher tem- 
peratures. 

To discuss the existence of peaks first consider an ideal- 
ized situation where the sample is cooled well below the 
nominal glass transition and annealed for infinite time. 
Here annealing simply means that the temperature (i.e. Oa) 
is held fixed. In our model, it is clear that Ob will relax to 
Oa. Now suppose the sample is heated and its apparent 
specific heat measured. Initially, as Oa increases, Ob fails to 
catch up, since the relaxation time is long at low tempera- 
tures. At somewhat higher temperatures, however, the 
relaxation time will have sufficiently decreased for Ob rapidly 
to approach 0 a. At yet higher temperatures, the two sys- 
tems are strongly coupled and Oa, Ob increase together. 
The situation is illustrated in Figure 4a where 0 a and 0 b are 
plotted against time. In the transition region marked X, 
the 'b'  modes are rapidly gaining energy, at the expense of 
the 'a' modes, or in other words, heat is leaking out of the 
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Figure 4 Variation of 8a and 8 b with time during measurement. 
A, e a and B, 19 b. (a) Infinite annealing time; (b) finite annealing 
time. The transition region is denoted by X 
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'a '  modes. Thus a lot of energy is required just to keep 0 a 
constant, let alone to cause it to increase. So an 
abnormally large apparent specific heat, i.e. a peak, will be 
recorded. 

Consider next a sample annealed for a short time. In 
this case 0 b would be substantially higher than 0 a, since 
there would not have been sufficient time during the cool- 
ing process for 0 b to decrease to the equilibrium value. 
When such a sample is heated, the behaviour of 0 a and Ob 
with time would be as indicated in Figure 4b. Clearly the 
rise in Ob in the transition region is less pronounced and a 
correspondingly smaller peak will be recorded in the appa- 
rent specific heat. Therefore the peak height will depend 
on annealing history. 

The qualitative discussion given above is meant to show 
that the experimental features are reproduced in our theory, 
irrespective of the particular forms of 7"(Oa), Ca(Oa), Cb(Ob). 
The calculations presented in the next section should there- 
fore be taken only as illustrative. 

Model calculation 

A model calculation is now presented for illustration. 
First we assume that Ca(Oa) and Cb(Ob) are linear functions 
of the respective temperatures, as depicted in Figure 5. The 
rapid decrease of 7" with temperature is attributed to the 
need for the molecule to surmount an energy barrier U=kO*. 

ok) 
7-(Oa) = 7" 1 exp (10) 

Here 0* is the activation temperature and 71 is a constant. 
In contrast to some superficially similar formulations s'94° 
our activation energy U and relaxation time 7- are not depen- 
dent on the cooling rate or the annealing history of the 
sample. In Figure 5 we have plotted the relaxation time r 
used in our calculation. The chosen values for the para- 
meters are: 

0* = 5 x 104K 

which corresponds to an activation energy U of 99.3 kcal/ 
tool and a value for r l  such that 7- (360K) = 18 sec. Dyna- 
mical mechanical and dielectric experiments gave an activa- 
tion energy 11 varying from 160 to 85 kcal/mol between 
360 and 375K and a relaxation time 12 of about 10 sec (at 
360K), which are comparable to our chosen values. 

Equations (7) and (8) can now be solved if initial condi- 
tions are given, but unfortunately the initial Ob cannot be 
measured. To circumvent this problem, all experiments 
are begun well above the glass transition where the relaxa- 
tion time is sufficiently short that Ob may be taken as iden- 
tical to 0 a. In this regard, we differ from some authors 4 
who determine the fictive temperature 0 b (or its equivalent) 
directly from data. 

Each experiment is then simulated theoretically by 
numerically integrating equations (7) and (8) forward in 
time. To be specific, we set: 

0 a = OaO + qt 

(where q is negative, zero or positive during cooling, an- 
nealing and measurement) and integrate equation (8) for 
0 b. Once Ob is found, it is put into equation (7) to obtain 
the external power P and the apparent specific heat is deter- 
mined from equation (5). Since equation (8) is a first order 
equation, a closed form solution is actually possible, but 
the mathematical manipulation merely obscures the sim- 
plicity of the physics and therefore will not be presented. 

The results are shown in Figures lb, 2b and 3b. All 
variables (cooling rate, annealing time, heating rate etc.) 
were chosen to be the same as the corresponding experi- 
ments. The following features are seen to be reproduced, 
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Figure 5 ] h e  i npu t  variables, specific heats Ca, C b and the relaxa- 
tion t ime r ,  as functions of tempera tu re ,  A ,  Ca; B, Cb; C, r ,  The 
f o r m  o f  C b at l ow  tempera tu re  is i r re levant  because of the long 
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Figure 6 Energy level diagram for the Volkenshtein and Ptitsyn 
two state model 

with the right order of magnitude: (1) the existence of a 
step, (2) the width of the step, (3) the shift of the step to 
higher temperatures with increasing heating rate, (4) exis- 
tence of a peak and (5) increase in peak height with de- 
creasing cooling rate or increasing annealing time. 

The remaining minor quantitative discrepancies point 
to a number of ways in which the model can be refined. 
In Figure 3b, the theoretical curves show no difference for 
annealing times of 5 h and 24 h, which is expected since 
the theoretical value of r from equation (10) is only 0.6 h 
at the annealing temperature (34810. However, the ex- 
perimental results (Figure 3a) show a noticeable difference 
for annealing times of 5 h and 24 h, indicating that r is 
fairly large, say > 5 h. This constitutes direct evidence that 
equation (10) underestimates the relaxation time at low 
temperatures and this defect can be remedied by using a 
temperature-dependent activation energy U, which should 
in general be defined as: 

u(oa) = ko*(oa)= x 
d In r(Oa) 

Indeed, as previously mentioned, there is independent evi- 
dence from mechanical measurements that U is temperature 
dependent n. Other ways of refining the model are: first, 
the relaxation time r may be dependent on 0 b as well6; 
secondly, for large 0 a - 0 b, perhaps more than one term is 
needed in the Taylor expansion of the heat exchange term 
in equation (6); finally, one may envisage several types of 
'b' modes, each with its own activation energy. However, 
our purpose here is not so much to obtain a detailed fit as 
to demonstrate that a simple kinetic model gives rise to the 
correct features. It would therefore be appropriate at this 
point to draw attention to certain implications of the class 
of models being considered here. 

(a) All input variables vary smoothly with temperature 
(Figure 5). Viewed in terms of these inputs, nothing spe- 
cial occurs at the so-called glass transition. Our theory thus 
differs in spirit from those formulations where a discon- 
tinuous input (e.g. sudden increase in volume-the so-called 
'free volume') is used to explain the discontinuity or step 
in the specific heat. Indeed the challenge of all studies of 
transition (of any sort) is to understand how the basically 
continuous dynamics manage to give rise to discontinuities 
or sudden changes in the macroscopic observables ~3. To 
invoke a discontinuous input would be begging the question. 

Kinetics o f  the glass transition: C. L. Choy and K. Young 

(b) Of the three input variables (see Figure 5), Ca and 
C b are thermodynamic in that they describe the equilibrium 
properties of the system. These have only a gentle tem- 
perature dependence. The third input variable, r, is kinetic 
in the sense that it pertains not to the equilibrium state but 
to the approach to equilibrium. It is the rapid (though 
smooth) variation of r with temperature which leads to the 
appearance of a glass transition. This is precisely what we 
mean by saying that the glass transition is kinetic in origin. 

(c) Well below the glass transition, the 'b' modes are 
essentially decoupled, so the actual form of Cb at low tem- 
peratures becomes immaterial in our theory. Thus the 
success of our theory does not exclude the possibility that 
Cb may decrease drastically at some low temperature 1,2's, 
which would be the expected behaviour if these 'b' modes 
resemble a collection of Einstein modes 8. However, there 
is no reason to believe that the form of this thermodynamic 
decrease (as indicated in Figure 5) has anything to do with 
the observed kinetic transition. 

COMPARISON WITH OTHER MODELS 

In this section we show that the microscopic models con- 
sidered by other workers in fact agree with the rather gene- 
ral equations (7) and (8). 

We start by restating the Volkenshtein and Ptitsyn (VP) 
model 3 in our language. VP assumed a two state system 
with energy gap E (Figure 6) and wrote the following rate 
equation for the occupation number, v, in state 2: 

d~ 1 

dt r 
(v - re) (1 l )  

where Ve is the equilibrium number at the temperature 0 in 
question. Since 0 refers to the temperature of phonons, we 
identify it with 0 a. For these two states: 

exp(-E/kOa) 
Ve = VO ( 1 2 )  

1 + exp(-E/kOa) 

VP assumed that transitions between states 1 and 2 cannot 
occur directly, but only via a metastable state of energy 
U = kO*, as shown in Figure 6. (One could equivalently 
speak of an energy barrier separating two inequivalent con- 
formations.) Then the transition rate r -1 is: 

1 
- A exp(-U/kOa) = A exp(-O*/Oa) (13) 

r(Oa) 

Furthermore, if U ~  E, T will vary much more rapidly than 
l/e . 

We identify the two state system (states 1 and 2) with 
our 'b' modes and show that equation (8) is obtained. To 
proceed, note that since v e varies slowly, we may replace 
equation (12) by a linear function in the temperature range 
of interest: 

v e = a + ~0 a (14) 

Now Ve is the equilibrium number, i.e. the number when 
the two state system is at Oa. So if the two state system is 
not in equilibrium with the phonons, but is at a different 
temperature Ob, then the actual number v in state 2 must 
be given by an equation analogous to (14): 
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v = a  +~Ob (15) 

Also, by energy considerations, the heat capacity Cb of 
these modes is given by: 

Cb dOb = Edv 

hence 

Putting in all these together, we have: 

dO b dv I 
C b = E - -  = - E  - (v - re) 

dt dt r 

= [CbA exp(-0*/0a)]  (0b - 0a) 

This agrees precisely with our equation (8) if: 

?/(Oa) = CbA exp(-O*/Oa) 

Thus we see that the VP model corresponds closely to the 
model calculation presented in the previous section. 

Wunderlich et al. 4's considered the hole theory, which 
can in fact be obtained from VP through the following 
translations: 

state 1 --> absence of holes 
state 2 -+ presence of  holes 

E -+ energy of each hole 
U ~  activation energy for creation or destruction 

of holes 

Provided that no sudden changes in the equilibrium number 
of holes is assumed, the hole theory will again reduce to a 
special case of our model. However, the reality of holes, 
and consequently the validity of hole theory, is not entirely 
free from doubt. 

It should also be mentioned that none of the previous 
works in this fieldS'9'l°,14contain an analogue to our equa- 
tion (7), which describes the evolution of 0 a. While this 
omission is not serious in situations where 0 a is a controlled 
input variable (e.g. in a d.s.c.), it becomes a major deficiency 
in cases where Oa is a dependent variable which is to be 
determined (e.g. in adiabatic calorimetry). 

The above models provide concrete realizations of our 
theory but the microscopic details are subsumed under our 
macroscopic variable 0 b. In this regard, the relation between 
our theory and the microscopic models (VP or holes) is not 
unlike that between thermodynamics and statistical mecha- 
nics. We expect our theory to be useful not only in provid- 
ing an understanding of the transition, but also in relating 
certain macroscopic phenomena in a simple way, as illus- 
trated in the next section by the thermal expansivity. 

THERMAL EXPANSIVITY 

We now extend our kinetic theory to a phenomenological 
explanation of the behaviour near the glass transition of 
the thermal expansivity 5: 

5 = - -  - -  

1 dV 

V dO 
(16) 

It should now be clear that two temperatures 0 a and 0 b a r e  

required to characterize the system, so the volume V should 
be regarded as a function of both temperatures: 

V = V(Oa, Oh) 

The 0 in equation (16) is the observed temperature and is 
to be identified with 0 a. So: 

I dV  1 i}V 1 aV dOb/dt 
5 -  - + ( 1 7 )  

V dOa V aO a V bO b dOa/dt 

We define the thermodynamic variables 

1 OV 
~,b - (18) 

V aOa, b 

which, in the spirit of the present theory, are not expected 
to have abrupt changes. Substituting equation (18) into 
equation (17), the apparent expansivity, 5, is: 

dOb/dt 
a = ~ a + S b - -  (19) 

dOa/dt 

The time t is explicitly used in equation (19) to emphasize 
the kinetic properties and to make a connection with the 
basic equations (7) and (8). In any given experimental 
situation, dOa/dt and dOb/dt are to be obtained by solving 
equations (7) and (8). Equation (19) then provides a pre- 
diction for the apparent expansivity. 

From Figures 4a or 4b, where 0 a and Ob are plotted 
against time t during heating, we see that the ratio (dOb/dt)/ 
(dOa/dt) changes from zero to one as the transition is passed. 
So 5 changes from % to ~ + 5 b and the existence of a step 
in 5 is easily understood. Ideas similar to those expressed 
in this section are also implicit in the work of Tool 6. 

It is thus seen that the kinetic theory proposed here 
unifies the discussion on the specific heat and the expan- 
sivity. This is merely one example of the possible applica- 
tions of our theory in correlating the properties of macro- 
scopic observables. 

CONCLUSION 

We have constructed a two temperature kinetic theory to 
account for the glass transition. The second or fictive tem- 
perature Ob is found to be a convenient variable for summar- 
izing the history of the system. The fact that no sudden 
changes in the thermodynamic variables need be assumed 
has been particularly emphasized. 

Further work may be undertaken along a number of 
directions. First, one would like to identify convincingly 
the nature of the 'b' type modes. For this purpose an ex- 
perimental comparison of a series of polymers would be 
fruitful. In this regard we note that techniques consistent 
with our theory are already known whereby the kinetic 
parameters such as the activation energy can be deduced 
from data 14. Independently one could explore the pheno- 
menological consequences, of which the previous section 
provides an example. A third problem lies in the refinemem 
of the model and more quantitative comparison with ex- 
perimental data. We would however suggest that our 
relatively meagre knowledge of the amorphous state does 
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not justify the construction of an over elaborate model at 
this stage. 
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